

A system of equations is "more than 1 equation". When graphing a system of linear equations, you are graphing 2 lines to see if they meet, which is called the point of intersection. There are 3 types:

- Consistent Equations if the lines cross once, there will be one solution.
- Inconsistent Equations if the lines are parallel, there will be no solutions.
- <u>Dependent</u> Equations if the lines are the same, there will be an infinite number of solutions.
- *If the lines are **parallel**, then the lines have the same slope.

*If the lines are **perpendicular**, then the lines have negative reciprocal slopes.

Steps

- 1. Rewrite the equations in slope-intercept form then set up tables for each equation.
- 2. Use the slope and y-intercept to graph the lines or use the values from the tables to graph the lines.
- 3. Label the lines.
- 4. State the point of intersection.
- 5. Check with the graphing calculator/desmos.com

Example

Solve the following system of equations graphically:

$$2x + 3y = 9$$

$$y + 5 = 2x$$

Work:

3

y = 2x - 5

Point of intersection: (3, 1)

Jame:

Alg. 1 H - Date: Sept. 14

Give on page 10

1.)
$$3y + 18 = 2x$$

$$y + x = -1$$
line 1
$$3y + 18 = 2x$$

$$-18 - 18$$

$$3y - 18 = 2x$$

$$-18 - 18 = 2x$$

$$3y - 18 = 2x$$

$$-18 - 18 =$$

$$2ine^{2}$$
 $y + x/= -1$
 $-x - x$
 $y = -x - 1$
 $2m = -1$
 $2m = -1$

$$3y - \sqrt{5} = 2x
+15 +15$$

$$3y = 2x + 15
3 3$$

$$y = \frac{2}{3}x + 5$$

$$6 = \frac{2}{3}$$

Point of intersection: $(Q_1 - G_2)$