1. What is the value of w in the equation:

2. Which expression represents an irrational number?

$$
\begin{aligned}
& \begin{array}{l}
\text { (2) }) \frac{1}{4} \\
\text { (2) } \frac{0}{1} \\
\\
\\
\\
\end{array} \\
& \text { (3) } \sqrt{16}=\frac{4}{1} \\
& \text { (4) } \sqrt{7} \approx 2.6457517 \\
& \text { a \#that can not be } \\
& \text { written as a fraction }
\end{aligned}
$$

2. If $\mathrm{n}+6$ represents a positive odd integer, the next larger positive odd integer is represented by
(1) $\mathrm{n}+4$
(3) $2(n+6)$
(2) $n+5$
(4) $n+7$

Learning Objective:
I will be able to multiplying and divide radicals.

Aim: To students will be able to simplify and multiply radicals.

Multiplying Radicals

Multiplying Radicals

- $\sqrt{ }$
(radical) times (radical)

Steps to Multiply Radicals

1. Multiply the coefficients (the numbers outside the radicals)
2. Multiply the radicands (the numbers inside the radicals)
3. Then simplify the remaining radicals.

Radicals

Dividing Radicals

Dividing Radicals

Steps to Divide Radicals

1. Divide the coefficients (the numbers outside the radicals)
2. Divide the radicands if possible (the numbers inside the radicals)
3. Rationalize the denominator so that no radical remains in the denominator

Examples
3.) $\frac{\sqrt{56}}{\sqrt{7}}$
4.) $\sqrt{\frac{7}{3}} \cdot \sqrt{\frac{3}{28}}$

Hillidillily

To multiply radicals:

1. multiply the coefficients
2. multiply the radicands
3. then simplify the remaining radicals.

Multiply and then simplify

$$
\text { 1.) } \begin{aligned}
& \sqrt{5} \bullet \sqrt{35} \\
= & \sqrt{175} \\
= & \sqrt{25 \cdot 7} \\
= & 5 \sqrt{7}
\end{aligned}
$$

Steps:

1. Multiply the radicands (the numbers inside the radicals)
2. Simplify the radical

Multiply and then simplify

$$
\text { 2.) } \begin{aligned}
& 2 \sqrt{8} \bullet 3 \sqrt{7} \\
= & 6 \sqrt{56} \\
= & 6 \sqrt{4 \bullet 14} \\
= & 6 \cdot 2 \sqrt{14} \\
= & 12 \sqrt{14}
\end{aligned}
$$

Learning Objective:
I will be able to multiplying and divide radicals.

Multiply and then simplify $\quad y=x$

Steps:

1. Multiply the coefficients (the numbers outside the radicals)
2. Multiply the radicands (the numbers inside the radicals)
3. Simplify the radical

$$
\text { 5.) } \begin{aligned}
& 2 \sqrt{5} \bullet 4 \sqrt{20} \\
&= 8 \sqrt{100} \\
&=8 \cdot 10 \\
&=80
\end{aligned}
$$

Learning Objective:
I will be able to multiplying and divide radicals.

Multiply and then simplify

$$
\begin{array}{ll}
\text { 6) }(2 \sqrt{8})^{2} & \\
(2 \sqrt{8})(2 \sqrt{8}) & *(\sqrt{8})(\sqrt{8}) \\
4 \sqrt{64} & (\sqrt{8})^{2}=8 \\
4.8 & (\sqrt{6})^{2}=6
\end{array}
$$

Multiply and then simplify

To divide radicals:

1. divide the coefficients
2. divide the radicands if possible
3. rationalize the denominator so that no radical remains in the denominator

Divide and simplify.

$$
\text { 3.) } \begin{array}{r}
\frac{\sqrt{56}}{\sqrt{7}}= \\
=\sqrt{8} \\
\sqrt{4 \sqrt{2} \cdot 2}
\end{array}
$$

Steps:

1. Divide the radicands (the numbers inside the radicals)
2. Simplify the radical

Learning Objective:
I will be able to multiplying and divide radicals.

Divide and simplify.

$$
\text { 4.) } \sqrt{\frac{8}{3}} \cdot \sqrt{\frac{\beta^{\prime}}{28}}=\sqrt{\frac{1}{4}} \quad \begin{aligned}
& \text { Steps: } \begin{array}{l}
\text { 1. Divide9trd radicands } \\
\text { (the numbersithside the eradicals) }
\end{array}
\end{aligned}
$$

2. Simplify the radical

7. Simplify. $\sqrt{\frac{22}{2} \frac{2}{5}} \cdot \sqrt{\frac{2}{x} \frac{2}{3}}$

Change the mixed fractions into improper fractions

Simplify the radical fraction

Learning Objective:

I will be able to multiplying and divide radicals.

Divide and simplify.

$$
\text { 9.) } \frac{-12 \sqrt{24}}{3 \sqrt{2}}
$$

$$
\begin{aligned}
& -4 \sqrt{12} \\
& -4 \sqrt{14 \cdot 3}
\end{aligned}
$$

1. Divide the coefficients
(the numbers outside the radicals)
2. Divide the radicands
(the numbers inside the radicals)
3. Simplify the radical

$$
-4 \cdot 2 \sqrt{3}
$$

$$
-8 \sqrt{3}
$$

Divide and simplify.

No radicals in the denominator.

To "remove" a radical from the denominator, multiply the top and bottom of the fraction by that same radical to create a rational number (a perfect square radical) in the denominator. This process is called rationalizing the denominator.
10.) $\frac{\sqrt{5}}{\sqrt{10}}$

Steps:

1. Divide the radicands (the numbers inside the radicals)
2. Rationalizing the denominator

Learning Objective:
I will be able to multiplying and divide radicals.

Divide and simplify.
11.) $\frac{3}{\sqrt{12}} \cdot \frac{\sqrt{12}}{\sqrt{12}}=\frac{3 \sqrt{12}}{12}$
$(\sqrt{12})(\sqrt{12})=\sqrt{144}$

$$
\frac{2 \sqrt{3}}{12}=\frac{\sqrt{3}}{2}
$$

Divide and simplify.

13.) $\begin{aligned} \frac{9 \sqrt{3}}{\sqrt{24}} & =\frac{\sqrt{24}}{\sqrt{24}}\end{aligned}=\frac{9 \sqrt{72}}{24}$

