

1. What is the value of w in the equation:

1) 6 2) 2 3) 3.6

2. If n + 6 represents a positive odd integer, the next larger positive odd integer is represented by (1) n + 4 (3) 2(n+6) n+6+2 = n+8

(1)
$$n + 4$$
 (3) $2(n + 6)$
(2) $n + 8$ (4) $n + 7$

Aim: To students will be able to simplify and multiply radicals.

To multiply radicals:

- 1. multiply the coefficients
- 2. multiply the radicands
- 3. then simplify the remaining radicals.

1.) $\sqrt{5} \cdot \sqrt{35}$ $=\sqrt{175}$ $=\sqrt{25} \cdot 7$

Steps:

 Multiply the radicands (the numbers inside the radicals)

2. Simplify the radical

2.)
$$2\sqrt{8} \cdot 3\sqrt{7}$$

= $6\sqrt{56}$
= $6\sqrt{4} \cdot 14$
= $6 \cdot 2\sqrt{14}$
= $12\sqrt{14}$

Steps:

1. Multiply the coefficients (the numbers outside the radicals)

2. Multiply the radicands (the numbers inside the radicals)

3. Simplify the radical

1=X

5.) $2\sqrt{5} \cdot 4\sqrt{20}$

Steps:

1. Multiply the coefficients (the numbers outside the radicals)

2. Multiply the radicands (the numbers inside the radicals)

3. Simplify the radical

radicals) hds dicals) $= 8 \cdot 10$ = 80

Multiply and then simplify 6) $(2\sqrt{8})$ (258)(258)(18)(.)

8.) $(2\sqrt{x})^{3}$ $(2\sqrt{x})^{2}(2\sqrt{x})^{3}(2\sqrt{x})$ Learning Objective: I will be able to multiplying and divide radicals.

To divide radicals:

- 1. divide the coefficients
- 2. divide the radicands if possible

3. rationalize the denominator so that no radical remains in the denominator

Steps:

1. Divide the radicands (the numbers inside the radicals)

2. Simplify the radical

7. Simplify. $\sqrt{\frac{2^2}{x5}} \cdot \sqrt{\frac{12}{x3}}$

9.) $\frac{-12\sqrt{24}}{3\sqrt{2}}$

Steps:

1. Divide the coefficients (the numbers outside the radicals)

2. Divide the radicands (the numbers inside the radicals)

3. Simplify the radical

No radicals in the denominator.

To "remove" a radical from the denominator, multiply the top and bottom of the fraction by that same radical to create a rational number (a perfect square radical) in the denominator. This process is called *rationalizing the denominator.*

